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Abstract
When multiple influencers attempt to compete for
a receiver’s attention, their influencing strategies
must account for the presence of one another. We
introduce the Battling Influencers Game (BIG),
a multi-player simultaneous-move general-sum
game, to provide a game-theoretic characteriza-
tion of this social phenomenon. We prove that
BIG is a potential game, that it has either one or
an infinite number of pure Nash equilibria (NEs),
and these pure NEs can be found by convex opti-
mization. Interestingly, we also prove that at any
pure NE, all (except at most one) influencers must
exaggerate their actions to the maximum extent.
In other words, it is rational for the influencers to
be non-truthful and extreme because they antici-
pate other influencers to cancel out part of their
influence. We discuss the implications of BIG to
value alignment.

1. Introduction
Life is full of agents who want to influence others: Food
truck vendors entice us with BBQ samples; Social media
influencers review selective pickleball brands to persuade
us; Editors publish op-eds to sway public opinions. When
multiple influencers with conflicting interests battle for our
attention, intuitively they would be strategic and adjust their
actions to account for the presence of one another in order
to be effective.

This paper presents a game theoretic definition of the Bat-
tling Influencers Game (BIG). We model the influencers as
players in a multi-player simultaneous-move general-sum
game. Our main technical result is that BIG is a potential
game with special pure Nash Equilibria structures. Conse-
quently, we can predict how rational influencers would ad-
just their strategies in the battle: exaggeration is inevitable.
This prediction may shed new computational light on the
genesis of misinformation.

As a use case, BIG can be applied to the AI value alignment
problem. The receivers of the influence were traditionally

people, but can extend to AI value alignment algorithms.
However, unlike in standard machine learning, our focus is
not on the value alignment algorithm itself. Instead, BIG
predicts how battling alignment-data providers could be
motivated to intentionally produce training data that do
not truthfully reflect their values. While out of scope for
the current paper, our insight can help design future value
alignment algorithms to remove such incentives.

2. Related Work
Our work provides a game theoretic model of the numerical
example and informal theorem in section 5 of (Park et al.,
2024), in particular, we also assume strategic data providers
(which we call influencers) to large language models (which
we call receivers), and our model leads to results consistent
with their example where the data providers untruthfully
report their opinions. In addition, we prove the existence
of pure strategy Nash equilibria of this class of games, and
we show the property that almost all influencers maximally
exaggerate their preferences in every equilibrium. Our work
is also closely related to (Hao & Duan, 2024), which mod-
els the interaction between multiple influencers by a dy-
namic Bayesian game. They described the phenomenon
of strategic extreme exaggeration, which is also discussed
in (Sun et al., 2024), (Soumalias et al., 2024), (Conitzer
et al., 2024), and (Roughgarden & Schrijvers, 2017) for
various applications, but they do not explicitly compute the
equilibria of the original game or quantify the amount of
exaggeration. In comparison, we use a static game with
known influencer types and we are able to provide better
characterizations of the set of equilibria of the game.

Value alignment aims to make language models produce
outputs that are more aligned with human values. Exist-
ing training frameworks tailored for this purpose, such as
(Ouyang et al., 2022) and (Rafailov et al., 2024), collect
preference data from humans and train a large language
model to follow users’ intent. However, research in this
direction mostly focuses on the algorithmic aspects of value
alignment and does not emphasize the heterogeneity of hu-
man values. There has been work that studies how to make
LLMs align with diverse preferences of different demo-
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graphic groups (Bakker et al., 2022; Chen et al., 2024),
but they do not have a rigorous game theoretic foundation
that characterizes strategic behaviors of preference data
providers. There is also recent work by (Munos et al.,
2023), (Swamy et al., 2024), and (Rosset et al., 2024)
on learning a pairwise or general preference model, where
they used the term Nash learning or Direct Nash Optimiza-
tion. The players in their zero-sum games are not strategic
data providers, and they use the Nash equilibrium solution
concept mainly as an optimization technique to solve their
minimax problem.

3. Problem Definition
The Battling Influencer Game (BIG) is an n-player
simultaneous-move game. The players are the n influ-
encers. The players have a common continuous action space
X ⊂ Rd which is compact and convex. Let xi ∈ X be the
action of the ith player for i ∈ [n] := {1, 2, ..., n}. For ex-
ample, xi could be the embedding vector of the text corpus
that influencer i produces. A joint action, or pure strategy
profile, x = (x1, . . . ,xn) denotes the simultaneous action
choice of all influencers. As in standard literature, we also
write x = (xi,x−i) when we want to emphasize player i.

For the narrative, we posit a receiver whom the influencers
want to influence. The receiver is not a strategic agent and
not a player of the game. Like an impressionable person,
the receiver aggregates to various degrees the inputs it re-
ceives from all influencers. In this paper we consider affine
receivers of the form

x̂ := w0x0 +

n∑
i=1

wixi, (1)

where wi, i ∈ [n] is a real-valued (not necessarily normal-
ized) weight that signifies how much influence influencer i
has on the receiver. For example, a company which can af-
ford to buy more ads has a larger wi compared to a company
with a smaller budget. x0 ∈ X is a bias term that, together
with w0 ∈ R, denotes a fixed, constant “background” influ-
ence that is beyond the control of the n influencers. The
receiver (1) is common knowledge to all players.

The n influencers each has a target ti ∈ Rd (i.e. the target is
not restricted to X ). For example, ti could be the embedding
vector of the published party manifesto of political party i.
The goal of influencer i is to drive the receiver’s x̂ close
to ti. This goal is reflected in the loss (negative utility)
function of influencer i. For concreteness, here we consider
squared 2-norm as the loss:

ℓi(x) := ∥x̂− ti∥22 = ∥w0x0 +

n∑
i=1

wixi − ti∥22. (2)

(See Section 5.1 for an alternative using cosine similarity.)
As rational agents, the influencers want to selfishly minimize

their own ℓi(x). The fact that the receiver’s x̂ is defined
by the joint action x couples the influencers together in a
general-sum game. It is due to the possible differences in
t1, . . . , tn that the influencers battle one another.

The above narrative can be abstracted into the following for-
mal definition of BIG, where the receiver becomes implicit:

Definition 1 (Battling Influencer Game (BIG)). The Bat-
tling Influencer Game is an n-player general-sum game
G = (n,X , {ℓi}ni=1). where n is the number of influ-
encers, X ⊂ Rd is a compact and convex action space,
and ℓi : Xn 7→ R taking the form of equation (2) is player
i’s loss function. The parameters x0, {wi}ni=0, {ti}ni=1 of
the loss functions are common knowledge to all players.

In the rest of the paper, we are interested in finding the pure
strategy Nash equilibria (NEs) of the game G. We then
characterize properties of these NEs, interpreting them in
the context of influencers.

4. Pure NEs of BIG and Their Properties
Definition 2. A pure strategy Nash equilibrium of the game
G = (n,X , {ℓi}ni=1) is a strategy profile x ∈ Xn satisfy-
ing,

ℓi (xi,x−i) ≤ ℓi (y,x−i) ,∀ y ∈ X , i ∈ [n]. (3)

A mixed strategy Nash equilibrium is a pure strategy Nash
equilibrium of the mixed extension G′ = (n,∆X , {ℓi}ni=1)
where the set of actions for each player is a distribution
(called a mixed strategy) over the original action set X , that
is, a mixed strategy profile s1:n with si ∈ ∆X satisfying,

E [ℓi (si, s−i)] ≤ E [ℓi (s
′, s−i)] ,∀ s′ ∈ ∆X , i ∈ [n]. (4)

In general, for finite games, for example, when X is finite,
there exists at least one mixed strategy Nash equilibrium, but
computing the Nash equilibrium is PPAD-complete (Poly-
nomial Parity Arguments on Directed graphs). When X is
not finite, which is usually the case for our BIG problem, a
mixed strategy Nash equilibrium is not guaranteed to exist.

Potential games are games with a special structure and allow
strong results on pure Nash equilibria. We will show BIG is
a potential game. The difficulty is in finding the potential
function. The following theorem provides a constructive
proof.

Theorem 1 (Potential Game). The Battling Influencers
Game G is a potential game with the potential function

ϕ(x) = ϕ(x1, . . . ,xn) :=

∥∥∥∥∥
n∑

i=0

wixi

∥∥∥∥∥
2

2

− 2

n∑
i=1

wit
⊤
i xi.

(5)
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Proof. We need to show if any player i deviates from action
xi to any action y ∈ X , we have ℓi(xi,x−i)−ℓi(y,x−i) =
ϕ(xi,x−i) − ϕ(y,x−i). To this end, define an auxiliary
variable z that does not depend on xi or y:

z := w0x0 +
∑
j ̸=i

wjxj .

Then ℓi(xi,x−i) = ∥wixi + (z − ti)∥2 = ∥wixi∥2 +
2wix

⊤
i (z− ti) + ∥z− ti∥2, and

ℓi(xi,x−i)− ℓi(y,x−i)

= ∥wixi∥2 + 2wix
⊤
i (z− ti)− ∥wiy∥2 − 2wiy

⊤(z− ti).

On the other hand,

ϕ(xi,x−i) = ∥wixi + z∥2 − 2wit
⊤
i xi − 2

∑
j ̸=i

wjt
⊤
j xj

= ∥wixi∥2 + 2wi(z− ti)
⊤xi + ∥z∥2 − 2

∑
j ̸=i

wjt
⊤
j xj .

The last two terms do not depend on xi. Hence

ϕ(xi,x−i)− ϕ(y,x−i)

= ∥wixi∥2 + 2wi(z− ti)
⊤xi − ∥wiy∥2 − 2wi(z− ti)

⊤y

= ℓi(xi,x−i)− ℓi(y,x−i).

We next show that x ∈ Xn is a pure NE of G if and only if
x is a minimum of ϕ restricted to the domain Xn.

Proposition 2 (Pure NEs ⇐⇒ minima). The set of pure
Nash equilibria in G is

pNE(G) = argmin
x∈Xn

ϕ(x). (6)

Proof. Our potential function ϕ is the sum of two convex
functions in x and hence convex. Since the domain Xn is
convex and ϕ is smooth and convex, by Theorem 1 of (Ney-
man, 1997) and its corollary, the set of pure Nash equilib-
ria coincides with the minima of the potential function on
Xn.

We remark that by definition X is compact and convex, thus
Xn is bounded and closed. The potential function ϕ(x) may
not have a global minimum on the extended domain Rnd (it
could diverge to −∞ there), but on Xn it will have at least
one minimum (perhaps on the boundary). In fact, we have
the following guarantee.

Corollary 3 (Cardinality of pNE(G)). G has either one
pure NE or infinite pure NEs.

t1 t2x1 x2x̂
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Figure 1. (left) Both players maximally exaggerate their actions
with pure NE (x1 = 0, x2 = 6). (right) the potential function ϕ

Proof. Since the set of minima of the convex potential func-
tion on a compact domain Xn is non-empty, there is at least
one pure Nash equilibrium. Since the set of minima of the
convex potential function on a convex domain Xn is con-
vex (corollary in (Neyman, 1997)), any linear combination
of two distinct pure Nash equilibria is another pure Nash
equilibrium.

We now provide a few illustrative examples of BIG.

Example 1 (Two influencers with 1D actions). There are
n = 2 influencers whose individual action space is X =
[a, b] (we use a = 0, b = 6 in Figures 1 and 2). The
receiver takes the average: x̂ = x1+x2

2 . If the targets satisfy
t1 < a+b

2 and t2 > a+b
2 as in Figure 1, then there is a

unique pure NE: pNE(G) = {(x1 = a, x2 = b)}. Note
(x1 = t1, x2 = t2) is in general not a NE: if x2 = t2, the
first influencer will want to take a more extreme action x1 <
t1 to drive the receiver x̂ = x1+x2

2 closer to its target t1, and
vice versa for the second influencer, ad infinitum until they
hit the boundary. In other words, both influencers must
exaggerate their actions to the maximum extent possible.
In fact, this is the well-known best response dynamics in
potential games which we discuss later. As a result, both
influencers will end up playing at the opposite boundary of
X . No one is entirely happy: the receiver ends up in the
middle x̂ = a+b

2 so no influencer achieves their target. Still,
this is the best each influencer can do under the presence of
other influencers.

A more nuanced situation happens if t1, t2 are on the same
side of a+b

2 , for example the left side in Figure 2. There
is still a unique pure NE; at the NE both influencers still
need to misrepresent their target. However, the influencer
whose target is closer to the center point (in this example,
t2) can claim victory: The other influencer simply runs
out of more left-leaning actions and has to stop at the left
boundary x1 = a. The winning influencer best-responds
with x2 = 2t2−a, so that the receiver will end up at its target
x̂ = t2. Thus pNE(G) = {(x1 = a, x2 = 2t2 − a)} in this
example. Interestingly, if in addition t2 >

(
a+ a+b

2

)
/2

then influencer 2 indeed has a left-leaning target but has
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Figure 2. Pure NE (x1 = 0, x2 = 4). Influencer 2 not at boundary.

to misrepresent itself as right-leaning (x2 > a+b
2 ) to the

receiver. We will generalize this example in Theorem 4,
where we show at most one influencer can be interior.

Example 2 (2D actions). Same as Example 1 but let d = 2
and X = [−a, a] × [−a, a]. The game may now have an
infinite number of pure NEs. For example, let the targets

be t1 =

[
1
0

]
and t2 = −t1 as in Figure 3 (left). Then

pNE(G) =

{([
−a
−z

]
,

[
a
z

])
: z ∈ [−a, a]

}
. These infi-

nite many pure NEs are indicated by the blue and green
line segments, paired through the origin. All of them are
exaggerations from both influencers in terms of the x-axis.
All of them result in the receiver arriving at the origin.

x1

x2
x̂

t1 t2

x1

x2

x̂

t1

t2

Figure 3. Examples of infinite (left) and unique (right) pure Nash
equilibria in d = 2

In contrast, if the targets are arranged as in Figure 3
(right), there will only be a unique pure NE: pNE(G) ={([

−a
−a

]
,

[
a
a

])}
.

As seen from these examples, in BIG the pure NEs often in-
volve all influencers misrepresenting their true target to the
receiver (i.e. xi ̸= ti). Furthermore, such misrepresentation
often takes the form of extreme exaggeration, in the sense
that an influencer’s rational action xi at any pure NE is often
pushed to the boundary of the action space X so they cannot
exaggerate the action further. Our next theorem precisely
quantifies this phenomenon. We prove that, provided that
the influencers’ targets t1 . . . tn are all distinct, at any pure

NE extreme exaggeration is necessary for all but at most
one influencer. It is possible that all influencers must per-
form extreme exaggeration. Furthermore, if there exists one
influencer (say influencer i∗) who does not, then it is the
winner in that the receiver will end up at its target ti∗ ; Still,
this winning influencer in general also need to misrepresent
its target xi∗ ̸= ti∗ to the receiver, it is just that xi∗ is in the
interior of X and not extreme.

Theorem 4 (All-But-At-Most-One Extreme Exaggera-
tion). If {ti}ni=1 are all distinct, then every pure NE
(x1,x2, ...,xn) satisfies the property that,

|{i ∈ [n] : xi ∈ int X}| ≤ 1. (7)

Furthermore, if xi⋆ ∈ int X for some i⋆ ∈ [n], then,

x̂ = ti⋆ . (8)

Proof. For any i ∈ [n],

∇xi
ϕ = 2wi

n∑
k=0

wkxk − 2witi. (9)

Suppose ∃i, j ∈ [n], i ̸= j : xi,xj ∈ int X . Then

∇xi
ϕ = 0 = ∇xj

ϕ (10)

⇒ti =

n∑
k=0

wkxk = tj , (11)

a contradiction. Equation (8) follows from ∇xi∗ϕ = 0 and
the definition of the receiver (1).

Finally, we remark on algorithms to find pure NEs for BIG.
Due to Proposition 2, any convex optimization algorithm
that minimizes the convex function ϕ over the convex set
Xn with strong guarantees can be utilized to find a pure
NE (Boyd & Vandenberghe, 2004). Meanwhile, in the game
theory community the best-response dynamics is a tradi-
tional algorithm for finding a pure NE in potential games:
(Roughgarden, 2010)

Definition 3 (Best Response Dynamics). Starting from an
arbitrary x(0) ∈ Xn, the best response sequence

{
x(t)

}∞
t=1

converges to a pure Nash equilibrium of G, where,

x
(t)
i =

{
argminxi

ϕ
(
xi,x

(t−1)
−i

)
if i = t mod n

x
(t−1)
i otherwise.

(12)

Of course, best response dynamics correspond to coordinate
descent on ϕ. One interesting observation that is relevant
for BIG is that, under best response dynamics, no influencer
needs to know other influencers’ targets. This removes the
requirement that t1, . . . , tn must be common knowledge.
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Concretely, the influencers may carry out the best response
dynamics as a learning dynamics in a distributed fashion
over time, with no two influencers simultaneously updating
their actions. When influencer i updates its own action xi, it
observes other player’s most recent actions x−i but does not
need to know their targets t−i. This is because minimizing
the potential function ϕ along the xi direction is equivalent
to minimizing its own loss function ℓi:

argmin
xi

ϕ(xi,x−i) = argmin
xi

ℓi(xi,x−i). (13)

Therefore, the best response dynamics may offer a com-
putational account on how influencers in the real world
iteratively adjust their actions based on actions of other
influencers without knowing the other influencers’ true in-
tentions, and still reaching an equilibrium.

5. Extensions of BIG
5.1. An Alternative Player Loss Function

Up to now influencer i’s loss function (2) is based on the
Euclidean distance between its target point ti ∈ X and the
receiver x̂. In some applications, the following negative
inner product loss can be more appropriate:

ℓi(x) := −t⊤i x̂. (14)

That is, influencer i has a small loss if the receiver x̂ has a
large projection onto the direction of target direction ti.

BIG with this negative inner product loss (14) has an even
stronger guarantee: the game has a Weakly Dominant Strat-
egy Equilibrium.
Definition 4 (Weakly Dominant Strategy Equilibrium
(wDSE)). An action profile x = (x1 . . .xn) ∈ Xn is a
wDSE if for every player i,

ℓi (xi,x−i) ≤ li (y,x−i) , ∀y ∈ X ,x−i ∈ Xn−1. (15)

Remark 1. The term weakly dominant strategy equilibrium
is used in Chapter 4.5 of (Tadelis, 2013), and it is also
called dominant strategy equilibrium in Chapter 10.3 of (Os-
borne, 1994), and dominant strategy solution in Chapter
1.3.1 of (Roughgarden, 2010). As noted in (Osborne, 1994),
an action in a wDSE is not required to weakly dominate all
other actions for a player since the player could have mul-
tiple actions that are equivalent, all of which dominate the
remaining actions. wDSE is also a weaker solution concept
compared to (strictly) dominant strategy equilibrium, which
requires strict inequality everywhere,

ℓi (xi,x−i) < li (y,x−i) , ∀y ∈ X ,x−i ∈ Xn−1. (16)

Theorem 5 (Existence of wDSE). Under loss (14), game
G has a wDSE x∗

i satisfying,

x∗
i ∈ argmax

xi∈X
wit

⊤
i xi ,∀i ∈ [n]. (17)

Proof. Given an arbitrary joint action from other players
x−i, player i’s best response is

BR(x−i) := argmin
xi∈X

ℓi(xi,x−i) (18)

= argmin
xi∈X

−t⊤i x̂ (19)

= argmin
xi∈X

−t⊤i

w0x0 +

n∑
j=1

wjxj

 (20)

= argmin
xi∈X

−wit
⊤
i xi + const = x∗

i . (21)

The best response is independent of x−i.

One significant benefit of this wDSE is that each influencer
can compute their own x∗

i without the knowledge of other
influencers’ weights wj and target tj , ∀j ̸= i. This removes
the requirement that x0, {w0:n}, {t1:n} are common knowl-
edge from Definition 1. The wDSE action x∗

i in (17) is
determined in part by the sign of wi. When wi < 0 this
is akin to reverse psychology: knowing that the receiver
will flip its action direction in (1), influencer i should inten-
tionally go against its own target. We remark that x∗

i may
not be exactly along the direction of witi since it depends
on the domain X . Nonetheless, computing x∗

i is a convex
optimization problem–maximizing a linear function over a
convex set–and thus efficient.

Example 3 (Unique wDSE). In this example, d = 2 and
X is given by the diamond shape in Figure 4 (left), with

t1 =

[
1
0

]
and t2 =

[
0
1

]
. The unique wDSE is the action

profile containing the extreme points in X in the direction
of t1 and t2 .

Example 4 (Infinite wDSE). In this example, d = 2 and

X = [−a, a]× [−a, a], with t1 =

[
1
0

]
and t2 =

[
0
1

]
. All

actions for player 1 along the blue line are equivalent and
lead to the same loss regardless of player 2’s action, and all
other actions in X except for these actions along the blue
line are strictly dominated. Similarly, all actions for player
2 along the green line are equivalent and strictly dominate
all other actions. As a result, given Definition 4, any pair
of actions, one on the blue line for player 1 and one on the
green line for player 2, is a wDSE. There are infinite number
of them.

5



t1

t2

x1

x2

x̂
t1

t2

x1

x2 x′
1 = x′

2 = x̂′

x̂

Figure 4. Examples of unique wDSE (left) and infinite number of
wDSEs (right) in d = 2

5.2. Finite Action Space

So far, we have assumed that the influencers’ action space
X is a compact and convex (hence infinite unless singleton)
subset of Rd. In some applications, the influencers are re-
stricted to picking their actions from a finite X instead. For
example, X may be the collection of news articles published
by all professional news agencies within the past 24 hours,
and each influencer may select a handful of such news arti-
cles to place on a social media user (the receiver)’s timeline.
This motivates the extension to finite action space:

Definition 5 (BIG with finite action space). Battling Influ-
encer Game with finite action space is an n-player general-
sum game F =

(
n,

{
D(ki)

}n

i=1
, {ℓi}ni=1

)
, where the ac-

tion space of player i,D(ki) is the set of all subsets con-
taining ki elements (optionally allow repeats) from a fi-
nite X ⊂ Rd. The loss function of player i is given by
ℓi (x) = ∥x̂− ti∥22 with

x̂ = w0x0 +

n∑
i=1

wi

ki∑
j=1

x
(j)
i , (22)

where x
(j)
i is the jth element in player i’s chosen subset.

The parameters x0, {wi}ni=0 , {ti}
n
i=1 and {ki}ni=0 are com-

mon knowledge to all players.

In the original BIG G (Definition 1) where X is convex,
allowing the players to choose multiple items would not
affect the results since choosing multiple items is equivalent
to choosing the mean of these items, which is still in X .
In the new game, the average of items in X may not be
in X . However, the new game can be interpreted as each
influencer picks one “meta item” x′

i instead of ki items,

with w′
i = wiki, x′

i =
1

ki

ki∑
j=1

x
(j)
i .

Proposition 6. F is also a potential game, with a potential

function ϕ

({{
x
(j)
i

}ki

j=1

}n

i=1

)
:=

∥∥∥∥∥w0x0 +

n∑
i=1

w′
ix

′
i

∥∥∥∥∥
2

2

− 2

n∑
i=1

w′
it

⊤
i x

′
i. (23)

Therefore, the new game F also has at least one pure NE.
Since X is finite and the number of players is finite, F is a
finite game. A pure NE can be found through best response
dynamics (Roughgarden, 2010). Unlike the continuous case,
each iteration of best response dynamics can be costly to
compute for large values of ki since it involves solving a
variant of the subset sum problem.

Proposition 6 shows that the new game F must have at least
one pure NE. We now show a non-trivial example where
F can have an exponential number of pure NEs even when
there are only n = 2 players. This is true even if X contains
distinct elements, and the influencers cannot repeat chosen
elements.

Example 5 (Many pure NEs in F ). Consider an instance
of game F with n = 2, d = 1, t1 = − 1

4 , t2 = 1
4 ,

k1 = k2 = k, the receiver takes simple average x̂ =
1
2k

(∑k
j=1 x

(j)
1 +

∑k
j=1 x

(j)
2

)
. Let X = X− ∪ X+ where

X− :=
{
−2k · 2i

}|X |/2−1

i=0
,X+ :=

{
2k · 2i

}|X |/2−1

i=0
.

(24)

Assume |X | ≥ 2k. Consider any player 2 action x2 which
is a subset of X+ of size k. Note 1

2k

∑k
j=1 x

(j)
2 is a positive

integer with x2 indexing its binary representation. For ex-
ample, if k = 2 and x2 = {2k · 20, 2k · 21} then this integer
is 3. What is player 1’s best response to player 2? Given
player 1’s target t1 = − 1

4 , player 1 should take action x1

which selects the corresponding negative items in X−, for
example x1 = {−2k ·20,−2k ·21}. The joint action x1,x2

brings the receiver to x̂ = 0. This is the best that player 1
can do: any other x′

1 (i.e. a subset of size k of X ) is not
a best response because it changes x̂ to a different integer,
which is farther away from t1 compared to x̂ = 0. Con-
versely, x2 is also the best response to that x1. Therefore,
(x1,x2) forms a pure NE. Now, player 2 could have started

with
(
|X |/2
k

)
different x2 subsets, each corresponds to a

different pure NE. Therefore, if we allow k to grow with |X |
such as k = |X |/4, this game has an exponential number of
pure NEs.

6. Implications of BIG to Value Alignment
6.1. Heterogeneous Value Alignment as a Game

We now show empirically that a stylized version of value
alignment can be modeled by BIG. We are interested in the
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setting where multiple people with heterogeneous values
provide feedback data (Santurkar et al., 2023; Bakker et al.,
2022; Chen et al., 2024), and that they are aware of the pres-
ence of one another. Our focus is not on the value alignment
algorithm itself, which is fixed and only plays the role of the
receiver in BIG. Instead, we focus on how these people may
become strategic in providing their feedback. Specifically,
our analysis on BIG implies that rational people will ex-
aggerate their own value stance in anticipation of being
“canceled out” by one another. This may help explain one
source of misinformation in social discourse.

Concretely, we connect value alignment and BIG as follows.
Let the n people be the n players in BIG. We simplify
the feedback process by assuming only a single prompt
or context which we denote c (to avoid notation conflict
with actions x in BIG). We adopt the standard ideal point
model (Coombs, 1950; Jamieson & Nowak, 2011; Singla
et al., 2016; Xu & Davenport, 2020): For this context c, an
ideal point θ ∈ Rd, and a response y ∈ Rd (e.g. a document
embedding vector), we define the reward model

rθ(y) := −∥y − θ∥2 (25)

to measure how good the response y is for the prompt c
according to the ideal point θ. The closer y is to θ, the higher
the reward. Given a pair of responses y,y′, a player with
ideal point θ draws a stochastic binary pairwise judgment
label z ∈ {−1, 1} according to the Bradley-Terry-Luce
(BTL) model (Bradley & Terry, 1952):

P (z | y,y′, θ) =
1

1 + exp(−z(rθ(y)− rθ(y′)))
(26)

where z = 1 means y ⪰ y′ and z = −1 means y ≺ y′

to this player. Each player i will label Ni tuples of the
form (y, y′, z) where we assume y, y′ are i.i.d. from some
response distribution PY . Finally, the union of tuples from
all players are given to the value alignment algorithm as
training data.

Crucially, in BIG the players can misreport their values.
Each player i ∈ [n] has a true ideal point ti ∈ Rd which
represents their true value. These are their targets in BIG,
because they hope the value alignment algorithm ultimately
arrives at ti as well. The players have heterogeneous values
if the t1 . . . tn are distinct. If the players were truthful, they
would each use θ = ti in (26) when labeling their tuples.
However, BIG allows each player i to choose a fake ideal
point xi ∈ X ⊂ Rd. Player i instead uses θ = xi in (26) to
label its Ni tuples. Note the action space X is the space of
ideal points. An action, namely player i choosing ideal point
xi, is eventually reflected in the Ni tuples (in particular the
z’s) from that player for value alignment.

The value alignment algorithm plays the role of the receiver
in BIG. But unlike the affine function (1), we adopt the

standard maximum likelihood estimate for a global ideal
point model parameter x̂, trained from the union of tuples
annotated by all players (y,y′, z)1:N where N =

∑n
i=1 Ni:

x̂ = argmax
x∈Rd

N∑
j=1

logP (zj | yj ,y
′
j , θ = x). (27)

We note that the training data, being a mixture of BTL, is
outside the model family in (27); (27) itself seems highly
nonlinear and depends implicitly on the response distribu-
tion PY . Nonetheless, our empirical results indicate that the
MLE x̂ is approximately a linear combination of individual
player fake ideal points x1 . . .xn. This allows us to make
predictions on player strategic behaviors based on earlier
analysis on BIG. In particular, we predict that given the
opportunity the players will evolve their fake ideal points
{xi} similar to best-response dynamics; that they do this to
make the value alignment algorithm’s global ideal point (27)
closer to their true ideal points {ti}; and that they will end
up in a Nash equilibrium where their fake ideal points {xi}
are exaggerations of their true values {ti}. We next present
an experiment to support these predictions.

6.2. A Value Alignment Experiment

Let there be n = 2 players with ideal point action space
X = [−1, 1]. Their true ideal points are t1 = −0.1, t2 =
0.3 respectively. We draw N1 = 10000 i.i.d. pairs from the
response distribution for player 1 to label: (y, y′) ∼ PY =
uniform[−10, 10]2, and another N2 = 10000 i.i.d. pairs
for player 2.

In iteration 0, both players start truthfully. Player 1 starts
at its true ideal point x1 = t1 to annotate its preferences on
the N1 pairs. That is, for each (y, y′) pair player 1 draws
a Bernoulli ±1-valued label z according to (26) with θ =
x1 = t1. We show player 1’s annotated dataset (y, y′, z)N1

in Figure 5(left). For visualization purpose, we zoom in
to the center region [−3, 3]2 and also randomly thinned
out the data so that the noisy nature of z is easier to see.
Similarly, player 2 annotates its N2 pairs according to (26)
with θ = x2 = t2 (Figure 5 right).

Figure 5. Pairwise preference labels z when both players are truth-
ful. Left: player 1 with x1 = t1, right: player 2 with x2 = t2.
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These N1 + N2 preference tuples are given to the value
alignment algorithm (the receiver). The receiver numerically
solves for the MLE by (27). We show the log likelihood
surface in Figure 6(right). The MLE is at x̂ = 0.103, shown
in the same figure(left). We observe that the receiver, despite
maximizing the log likelihood, can be well-approximated
by an affine receiver

x̂ =
1

2
x1 +

1

2
x2. (28)

This concludes iteration 0.

Figure 6. Receiver’s MLE x̂ under truthful players.

In iteration 1, imagine player 1 observes all training data
and the value alignment algorithm output from iteration 0
(i.e. a global ideal point at x̂ = 0.103). It realizes that the
output is far from its true ideal point t1 = −0.1. For the
sake of exposition, we now allow player 1 to re-label its N1

tuples using a different (fake) ideal point x1. Player 2’s data
remain fixed. Then we will run value alignment algorithm
again. If player 1 can simulate the value alignment algo-
rithm, it can perform a binary search in x1 to best-respond
to player 2, with the goal to move value alignment algorithm
output to t1. We show this binary search in Figure 7. After 6
binary search steps player 1 finds that x1 = −0.536 is good:
together with player 2’s data this indeed moves value align-
ment algorithm output to x̂ = −0.101, very close to player
1 target t1 = −0.1. This is one iteration of empirical best-
response by player 1. Again, the empirical based-response
x1 = −0.536 is close to the theoretical best-response under
the affine receiver (28), which is x1 = 2t1 − x2 = −0.5.

Figure 7. Player 1 conducts a binary search to find the empirical
best response x1.

In subsequent iterations, we allow alternating players to
perform such empirical best-response. Figure 8 shows the
dynamics. In iteration 2, player 2 is able to somewhat drag
value alignment output x̂ back towards its target. However,
player 2 is limited by the action space: even with the maxi-
mum fake ideal point x2 = 1 the output only moves back
to x̂ = 0.209, not enough to reach its target t2 = 0.3. In
iteration 3, player 1 fights back with the minimum fake
ideal point x1 = −1, dragging value alignment output to
x̂ = 0.024, closer but not reaching its target t1 = −0.1.
This is when the dynamics converges to a Nash equilibrium,
where neither player can make further improvements. Ob-
serve at the NE (x1 = −1, x2 = 1) the player’s fake ideal
points are much exaggerated versions of their true ideal
points t1 = −0.1, t2 = 0.3, respectively.

Figure 8. Empirical best-response dynamics converges to an exag-
gerating Nash equilibrium in iteration 3.

In Figure 9 we provide a visualization of the final prefer-
ence labels z generated by the players after reaching the
Nash equilibrium (x1 = −1, x2 = 1). This figure is to be
contrasted with Figure 5. Now both players are untruthful
and produce preference labels according to their fake, ex-
aggerated ideal points. This shift illustrates the effect of
BIG.
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Figure 9. Preference labels z at the Nash equilibrium showing
untruthfulness. Left: player 1 exaggerates with x1 = −1; Right:
player 2 exaggerates with x2 = 1.

7. Conclusion and Future Work
We proved that a version of the battling influencers game is a
potential game, and characterized its pure Nash equilibrium
structures. As a use case, our game applies to standard value
alignment via learning from preference feedback. Conse-
quently, we rationalized a strategic behavior (exaggeration)
in alignment data providers. Future work will focus on
mechanism design to remove incentives for such strategic
behaviors.
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